1.核心概念
注重對概念的考察是北京高考數(shù)學(xué)試題的特色。依據(jù)考試說明及試題特點(diǎn),以下幾個方面的概念是復(fù)習(xí)中應(yīng)特別關(guān)注的:
(1)充要條件;
(2)函數(shù):函數(shù)的本質(zhì)、表示、函數(shù)的性質(zhì)(主要是單調(diào)性)、函數(shù)觀點(diǎn)等;
(3)數(shù)列:函數(shù)的觀點(diǎn)(定義域可數(shù)的函數(shù))、歸納地推雨歸納猜想、等差(比)數(shù)列的概念;
(4)概率與統(tǒng)計(jì):隨機(jī)事件、加法及乘法公式、古典(幾何)概型、用樣本估計(jì)總體等;
(5)幾何有關(guān)的概念:三視圖、空間角、線性規(guī)劃、直線與圓、圓錐曲線的定義和性質(zhì)等。
2.核心思維
(1)極端原理;
(2)運(yùn)動變化的觀點(diǎn);
(3)試驗(yàn)、猜想;
(4)構(gòu)造;
(5)正難則反等。
3.核心方法
(1)配方法、待定系數(shù)法、換元法、作函數(shù)圖象的方法、求最大(小)值得方法;
(2)正弦型函數(shù)的圖像和性質(zhì)、正余弦定理的應(yīng)用;
(3)空間幾何元素平行垂直的證明、利用空間向量求空間角的方法;
(4)概率的求法、用樣本估計(jì)總體的方法;??
(5)導(dǎo)數(shù)的應(yīng)用、函數(shù)的應(yīng)用:解決方程(零點(diǎn))、不等式問題的方法;
(6)解析法解決圓錐曲線的問題。