第一,函數(shù)與導(dǎo)數(shù)。主要考查集合運算、函數(shù)的有關(guān)概念定義域、值域、解析式、函數(shù)的極限、連續(xù)、導(dǎo)數(shù)。
第二,平面向量與三角函數(shù)、三角變換及其應(yīng)用。這一部分是高考的重點但不是難點,主要出一些基礎(chǔ)題或中檔題。
第三,數(shù)列及其應(yīng)用。這部分是高考的重點而且是難點,主要出一些綜合題。
第四,不等式。主要考查不等式的求解和證明,而且很少單獨考查,主要是在解答題中比較大小。是高考的重點和難點。
第五,概率和統(tǒng)計。這部分和我們的生活聯(lián)系比較大,屬應(yīng)用題。
第六,空間位置關(guān)系的定性與定量分析,主要是證明平行或垂直,求角和距離。
第七,解析幾何。是高考的難點,運算量大,一般含參數(shù)。
高考對數(shù)學基礎(chǔ)知識的考查,既全面又突出重點,扎實的數(shù)學基礎(chǔ)是成功解題的關(guān)鍵。針對數(shù)學高考強調(diào)對基礎(chǔ)知識與基本技能的考查我們一定要全面、系統(tǒng)地復(fù)習高中數(shù)學的基礎(chǔ)知識,正確理解基本概念,正確掌握定理、原理、法則、公式、并形成記憶,形成技能。以不變應(yīng)萬變。
對數(shù)學思想和方法的考查是對數(shù)學知識在更高層次上的抽象和概括的考查,考查時與數(shù)學知識相結(jié)合。
對數(shù)學能力的考查,強調(diào)“以能力立意”,就是以數(shù)學知識為載體,從問題入手,把握學科的整體意義,用統(tǒng)一的數(shù)學觀點組織材料,側(cè)重體現(xiàn)對知識的理解和應(yīng)用,尤其是綜合和靈活的應(yīng)用,所有數(shù)學考試最終落在解題上。考綱對數(shù)學思維能力、運算能力、空間想象能力以及實踐能力和創(chuàng)新意識都提出了十分明確的考查要求,而解題訓(xùn)練是提高能力的必要途徑,所以高考復(fù)習必須把解題訓(xùn)練落到實處。訓(xùn)練的內(nèi)容必須根據(jù)考綱的要求精心選題,始終緊扣基礎(chǔ)知識,多進行解題的回顧、總結(jié),概括提煉基本思想、基本方法,形成對通性通法的認識,真正做到解一題,會一類。