浙江省普通高校“專升本”統(tǒng)考科目:
《高等數(shù)學(xué)》考試大綱
考試要求
考生應(yīng)按本大綱的要求,掌握“高等數(shù)學(xué)”中函數(shù)、極限和連續(xù)、一元函數(shù)微分學(xué)、一元函數(shù)積分學(xué)、無窮級數(shù)、常微分方程、向量代數(shù)與空間解析幾何的基本概念、基本理論和基本方法??忌鷳?yīng)注意各部分知識的結(jié)構(gòu)及知識的聯(lián)系;具有一定的抽象思維能力、邏輯推理能力、運算能力和空間想象能力;能運用基本概念、基本理論和基本方法進(jìn)行推理、證明和計算;能運用所學(xué)知識分析并解決一些簡單的實際問題。
考試內(nèi)容
一、函數(shù)、極限和連續(xù)
(一)函數(shù)
1.理解函數(shù)的概念,會求函數(shù)的定義域、表達(dá)式及函數(shù)值,會作出一些簡單的分段函數(shù)圖像。
2.掌握函數(shù)的單調(diào)性、奇偶性、有界性和周期性。
3.理解函數(shù)y=ƒ(x)與其反函數(shù)y=ƒ-1(x)之間的關(guān)系(定義域、值域、圖像),會求單調(diào)函數(shù)的反函數(shù)。
4.掌握函數(shù)的四則運算與復(fù)合運算;掌握復(fù)合函數(shù)的復(fù)合過程。
5.掌握基本初等函數(shù)的性質(zhì)及其圖像。
6.理解初等函數(shù)的概念。
7.會建立一些簡單實際問題的函數(shù)關(guān)系式。
(二)極限
1.理解極限的概念(只要求極限的描述性定義),能根據(jù)極限概念描述函數(shù)的變化趨勢。理解函數(shù)在一點處極限存在的充分必要條件,會求函數(shù)在一點處的左極限與右極限。
2.理解極限的唯一性、有界性和保號性,掌握極限的四則運算法則。
3.理解無窮小量、無窮大量的概念,掌握無窮小量的性質(zhì),無窮小量與無窮大量的關(guān)系。會比較無窮小量的階(高階、低階、同階和等價)。會運用等價無窮小量替換求極限。
4.理解極限存在的兩個收斂準(zhǔn)則(夾逼準(zhǔn)則與單調(diào)有界準(zhǔn)則),掌握兩個重要極限:
并能用這兩個重要極限求函數(shù)的極限。
(三)連續(xù)
1.理解函數(shù)在一點處連續(xù)的概念,函數(shù)在一點處連續(xù)與函數(shù)在該點處極限存在的關(guān)系。會判斷分段函數(shù)在分段點的連續(xù)性。
2.理解函數(shù)在一點處間斷的概念,會求函數(shù)的間斷點,并會判斷間斷點的類型。
3.理解“一切初等函數(shù)在其定義區(qū)間上都是連續(xù)的”,并會利用初等函數(shù)的連續(xù)性求函數(shù)的極限。
4.掌握閉區(qū)間上連續(xù)函數(shù)的性質(zhì):最值定理(有界性定理),介值定理(零點存在定理)。會運用介值定理推證一些簡單命題。
二、一元函數(shù)微分學(xué)
(一)導(dǎo)數(shù)與微分
1.理解導(dǎo)數(shù)的概念及其幾何意義,了解左導(dǎo)數(shù)與右導(dǎo)數(shù)的定義,理解函數(shù)的可導(dǎo)性與連續(xù)性的關(guān)系,會用定義求函數(shù)在一點處的導(dǎo)數(shù)。
2.會求曲線上一點處的切線方程與法線方程。
3.熟記導(dǎo)數(shù)的基本公式,會運用函數(shù)的四則運算求導(dǎo)法則,復(fù)合函數(shù)求導(dǎo)法則和反函數(shù)求導(dǎo)法則求導(dǎo)數(shù)。會求分段函數(shù)的導(dǎo)數(shù)。
4.會求隱函數(shù)的導(dǎo)數(shù)。掌握對數(shù)求導(dǎo)法與參數(shù)方程求導(dǎo)法。
5.理解高階導(dǎo)數(shù)的概念,會求一些簡單的函數(shù)的n階導(dǎo)數(shù)。
6.理解函數(shù)微分的概念,掌握微分運算法則與一階微分形式不變性,理解可微與可導(dǎo)的關(guān)系,會求函數(shù)的一階微分。
(二)中值定理及導(dǎo)數(shù)的應(yīng)用
1.理解羅爾(Rolle)中值定理、拉格朗日(Lagrange)中值定理及它們的幾何意義,理解柯西(Cauchy)中值定理、泰勒(Taylor)中值定理。會用羅爾中值定理證明方程根的存在性。會用拉格朗日中值定理證明一些簡單的不等式。
積分的性質(zhì)。
2.熟記基本不定積分公式。
3.掌握不定積分的第一類換元法(“湊”微分法),第二類換元法(限于三角換元與一些簡單的根式換元)。
4.掌握不定積分的分部積分法。
5.會求一些簡單的有理函數(shù)的不定積分。
(二)定積分
1.理解定積分的概念與幾何意義,掌握定積分的基本性質(zhì)。
2.理解變限積分函數(shù)的概念,掌握變限積分函數(shù)求導(dǎo)的方法。
3.掌握牛頓—萊布尼茨(Newton—Leibniz)公式。
4.掌握定積分的換元積分法與分部積分法。
5.理解無窮區(qū)間上有界函數(shù)的廣義積分與有限區(qū)間上無界函數(shù)的瑕積分的概念,掌握其計算方法。
6.會用定積分計算平面圖形的面積以及平面圖形繞坐標(biāo)軸旋轉(zhuǎn)一周所得的旋轉(zhuǎn)體的體積。
四、無窮級數(shù)
(一)數(shù)項級數(shù)
1.理解級數(shù)收斂、級數(shù)發(fā)散的概念和級數(shù)的基本性質(zhì),掌握級數(shù)收斂的必要條件。
試卷結(jié)構(gòu)
試卷總分:150分
考試時間:150分鐘
試卷內(nèi)容比例:
函數(shù)、極限和連續(xù)約20%
一元函數(shù)微分學(xué)約30%
一元函數(shù)積分學(xué)約30%
無窮級數(shù)、常微分方程約15%
向量代數(shù)與空間解析幾何約5%
試卷題型分值分布:
選擇題共5題,每小題4分,總分20分;
填空題共10題,每小題4分,總分40分;
計算題共8題,總分60分;
綜合題共3題,每小題10分,總分30分。
更多學(xué)歷考試信息請查看學(xué)歷考試網(wǎng)