行政職業(yè)能力測試,簡稱“行測”,是事業(yè)單位考試當(dāng)中重要的組成部分。其中,數(shù)字推理作為其組成部分之一,需要考生具備較強(qiáng)的數(shù)字敏感性和一定的數(shù)字運(yùn)算能力。當(dāng)然,解答相關(guān)題目的前提是了解數(shù)字推理中各種數(shù)列的形式和特點(diǎn)。本文就將對相關(guān)內(nèi)容進(jìn)行介紹。
一、等差數(shù)列
1.概念:如果一個數(shù)列從第二項(xiàng)起,每一項(xiàng)與前一項(xiàng)的差等于同一個常數(shù),那么這個數(shù)列就叫做等差數(shù)列。
??碱}型:二級等差數(shù)列,三級等差數(shù)列。
例:35,29,24,20,17,( )
(逐項(xiàng)作差后得公差為1的等差數(shù)列,為二級等差數(shù)列。三級等差數(shù)列為二級數(shù)列再作差所得。)
2.等差數(shù)列的變式
作差或持續(xù)作差后,得到其他數(shù)列或其變式,這是最??疾榈牡炔顢?shù)列規(guī)律。
例:39,62,91,126,149,178,( )
(作差后得到“23,29,35”的循環(huán)數(shù)列)
3.等差數(shù)列及其變式特征歸納
(1)數(shù)列中出現(xiàn)個別質(zhì)數(shù)的,一般都是等差數(shù)列或其變式,因?yàn)橹笖?shù)不具備進(jìn)行拆分尋求規(guī)律的可能性。
(2)含有0的數(shù)列很有可能是等差數(shù)列,因?yàn)?不易做遞推變化,多在等差數(shù)列或多次方數(shù)列中出現(xiàn),宜首先從作差方向?qū)で笠?guī)律。
(3)單調(diào)遞增或增減交替有可能是等差數(shù)列變式。
二、等比數(shù)列
1.概念:如果一個數(shù)列從第二項(xiàng)起,每一項(xiàng)與它前面一項(xiàng)的比等于同一個非零常數(shù),那么該數(shù)列就叫做等比數(shù)列。
與等差數(shù)列類似,二級等比數(shù)列,三級等比數(shù)列(較少)也是??键c(diǎn)。
2.等比數(shù)列變式
(1)二級等比數(shù)列;
(2)作商后得到等差/質(zhì)數(shù)/常數(shù)列。
例:4,4,16,144,( )
相鄰各項(xiàng)的商依次為12,22,32,(42)。144*16=(2304)。
3.等比數(shù)列及其變式特征歸納
(1)數(shù)項(xiàng)具有良好的整除性;
(2)遞增/遞減趨勢明顯,會出現(xiàn)先增后減的情況;
(3)具有遞推關(guān)系的等比數(shù)列變式可通過估算相鄰項(xiàng)間大致倍數(shù)反推規(guī)律。